Un repère orthogonal en mathématiques est un système de coordonnées qui permet de situer un point dans un plan. Il est composé de deux axes perpendiculaires l’un à l’autre, généralement désignés par les lettres x et y. Ces deux axes coupent le plan en quatre quadrants numérotés de I à IV dans le sens des aiguilles d’une montre.
Structure d’un repère orthogonal
Chaque point du plan est repéré par deux valeurs : son abscisse (qui correspond à sa position sur l’axe des x) et son ordonnée (qui correspond à sa position sur l’axe des y). Par exemple, le point A peut être repéré par les coordonnées (2,3) où 2 est l’abscisse et 3 est l’ordonnée.
Repère orthogonal dans la pratique
En mathématiques, le repère orthogonal est souvent utilisé pour tracer des graphiques et résoudre des problèmes de géométrie ou d’algèbre. Il permet de visualiser facilement des équations, des fonctions et des vecteurs.
Exemple concret
Imaginons que l’on cherche à représenter graphiquement l’évolution de la valeur d’une action en fonction du temps. On pourrait utiliser un repère orthogonal où l’axe des x représente le temps et l’axe des y représente la valeur de l’action. En plaçant des points à des coordonnées correspondant à des moments précis dans le temps, on peut tracer une courbe représentant l’évolution de la valeur de l’action.
En conclusion, un repère orthogonal en mathématiques est un outil essentiel pour situer des points dans un plan et visualiser des relations mathématiques. Il offre une représentation visuelle claire et précise qui facilite la compréhension et la résolution de problèmes mathématiques